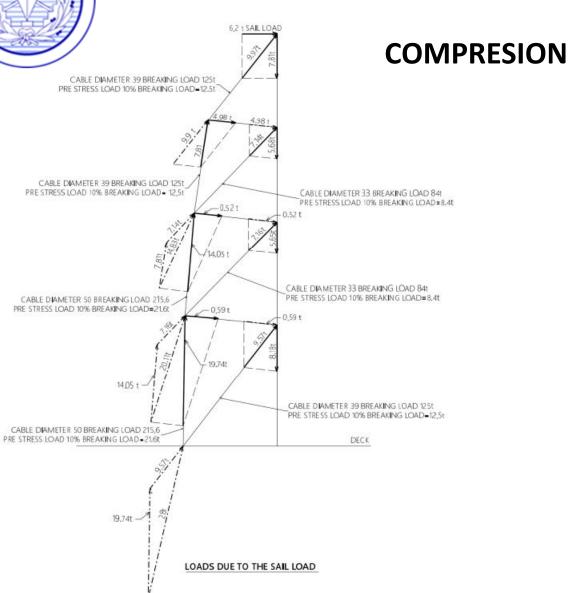
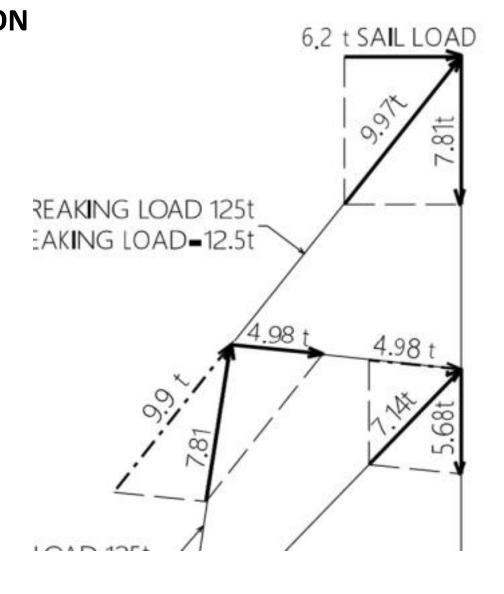

TIPOS DE PALOS QUE VEREMOS

PALOS ESBELTOS CON CRUCETAS

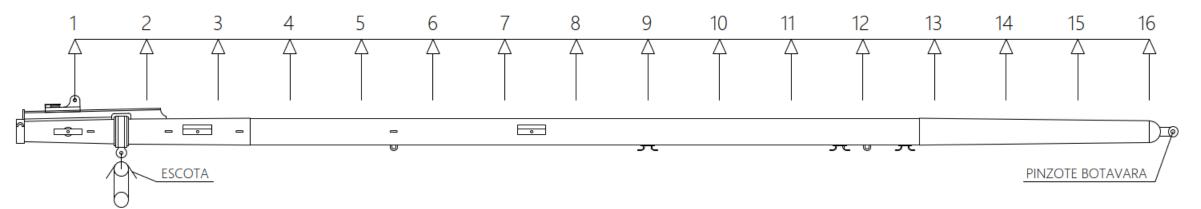
PALOS BUQUES CLASICOS

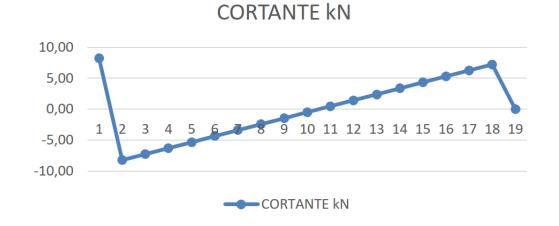
COMO TRABAJAN:


PALOS MACHOS, MASTELEROS, CRUCETAS Y BAUPRES: Cálculos de compresión.

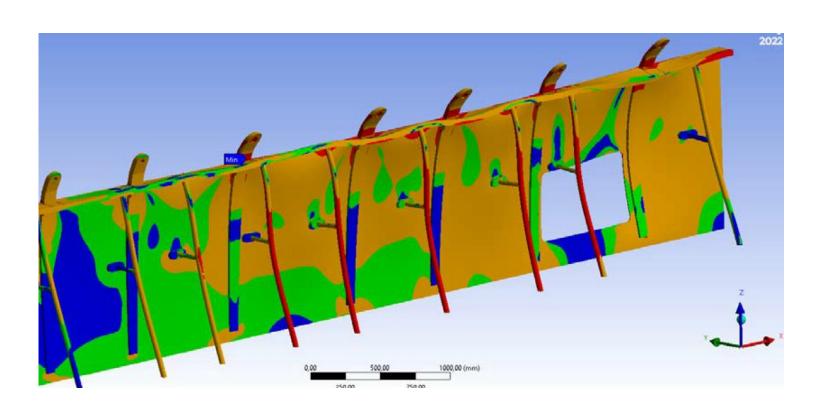

BOTAVARAS, VERGAS Y PICOS: Cálculos a flexión y cortante.

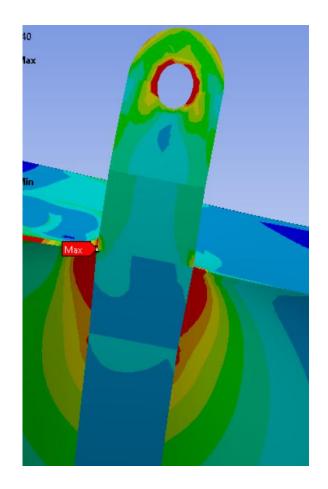
FIRMES DE CUBIERTA, AMURADAS Y PALOS: Cálculos por elementos finitos.





FLEXION Y CORTANTE





GHENOVA ENGINEERING THE FUTURE

ELEMENTOS FINITOS

CALCULOS A COMPRESIÓN

Euler's critical load

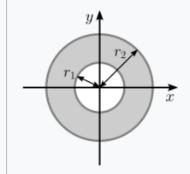
From Wikipedia, the free encyclopedia

Euler's critical load is the compressive load at which a slender column will suddenly bend or buckle. It is given by the formula:[1]

$$P_{cr} = \frac{\pi^2 EI}{(KL)^2}$$

where

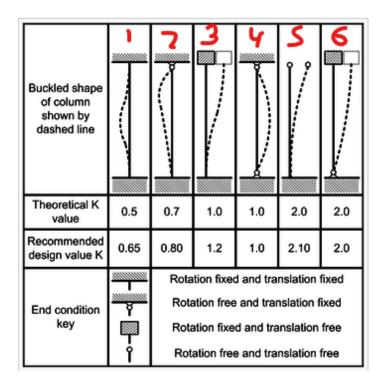
 P_{cr} , Euler's critical load (longitudinal compression load on column),


E, Young's modulus of the column material,

I. minimum area moment of inertia of the cross section of the column.

L, unsupported length of column,

K, column effective length factor

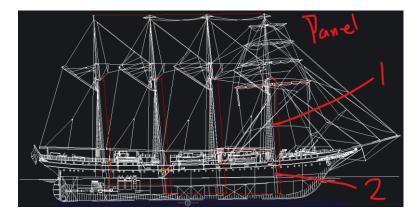


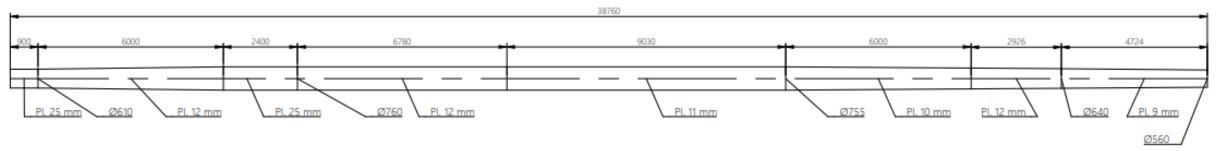
$$egin{aligned} I_x &= rac{\pi}{4} \left({r_2}^4 - {r_1}^4
ight) \ I_y &= rac{\pi}{4} \left({r_2}^4 - {r_1}^4
ight) \ I_z &= rac{\pi}{2} \left({r_2}^4 - {r_1}^4
ight) \end{aligned}$$

$$I_y = rac{\pi}{4} \left({r_2}^4 - {r_1}^4
ight)$$

$$I_z = rac{\pi}{2} \left({r_2}^4 - {r_1}^4
ight)$$

Fuente: Wikipedia


CALCULOS A COMPRESIÓN

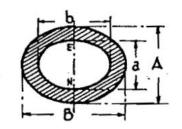


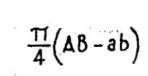
COMPLICACIONES:

Los palos pueden estar divididos en tramos con diferente sección.

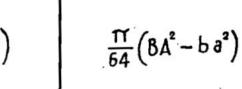
Cada tramo tiene una inercia diferente.

SOLUCION:


- Calcular a compresión cada uno de los tramos



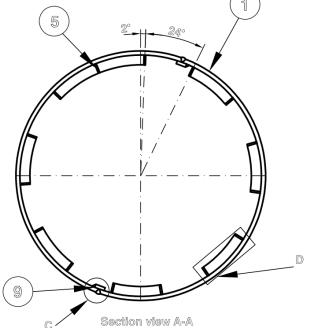
CALCULOS A COMPRESIÓN



A TENER EN CUENTA:

AREA

INERCIA


Pandeo local:

La pared del palo se deforma independientemente del resto de la sección trasversal.

Soluciones:

- Disminuir la relación diámetro/espesor.
- Colocar refuerzos interiores.
- Comprobar el pandeo local de esos refuerzos.

CALCULOS A COMPRESIÓN ANALISIS POR ELEMENTOS FINITOS

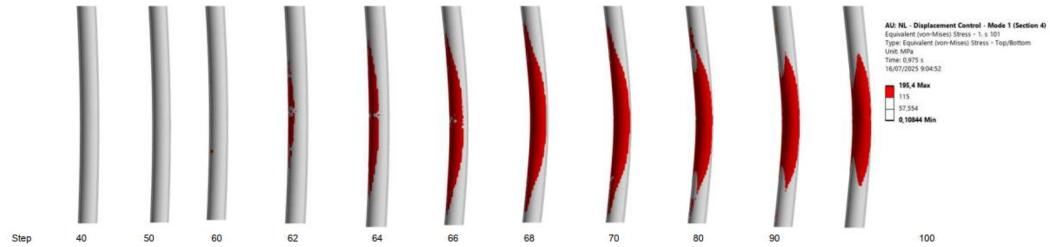


Table 31: Ship mast loads and numerical critical loads relationship

Section	Mast load (kN)	Minimum critical load (kN)	SF
Section 1	2.197	3.263	33%
Section 2	1.657	2.422	32%
Section 3	1.398	2.205	37%
Section 4	1.162	2.176	47%

CONDICIONES DE CARGA:

BAJO NINGUN CONCEPTO PODEMOS PONER EN PELIGRO LA INTEGRIDAD DEL BUQUE

NUESTROS FUSIBLES:

- Jarcia de labor.
- Velas.
- ❖ Jarcia firme.
- ❖ Palos.
- Firmes de cubierta.

- 1.- Carga debida al máximo par de adrizamiento del buque.
- 2.- Carga debida a la rotura de la jarcia firme.
- 3.- Carga debida a los esfuerzos de las velas de acuerdo con el manual de maniobra del buque.

ESFUERZO GENERADO POR LAS VELAS

FORMULA ESTIMATIVA CARGA DEL VIENTO

The total lateral force, Flati, in N, on each sail is given by the following equation:

$$Flat_i = \frac{1}{2} \cdot \rho \cdot AWS^2 \cdot A_i \cdot rf_i \cdot CL_{sail}$$

where

 ρ = air density at sea level (1.29 kg/m³)

AWS = apparent wind speed, in m/s

 A_i = area of each sail, in m²

 rf_i = reef fraction for each sail based on total sail area from 0 to 1

 CL_{sail} = lateral force coefficient of each sail as indicated in Section 3, Table 1

TABLE 1
Lateral Force Coefficient for Sails

Type of Sail	Lateral Force Coefficient (CLSail)
Main Sail	1.0
Mizzen Sail	0.9
Genoa/Jib/Blade/Staysail	1.1
Reacher	1,2
Spinnaker/MPS/Gennaker	1.2

Fuente: ABS

ESFUERZO GENERADO POR LAS VELAS

TABLA DE REDUCCION DE APAREJO

11 a 20 nudos	Fogue volante
20 a 25 nudos	Estayes
25 a 30 nudos	Escandalosas, Juanete y Petifoque
30 a 35 nudos	Foque, Contrafoque y Velacho alto
35 a 40 nudos	Trinquete cruz, antagallar 2ª faja Cangreja y 2ª ó 1ª faja Cangrejo
	Mayor Proel.
40 a 45 nudos	Antagallar 2ª faja Cangrejos

TABLA DE PARES ESCORANTES

	VIENTO 0-11 NUDOS	VIENTO 11-20 NUDOS	VIENTO 20-25 NUDOS	VIENTO 25-30 NUDOS	VIENTO 30-35 NUDOS	VIENTO 35-40 NUDOS	VIENTO 40-45 NUDOS	EN CAPA +45 NUDOS
MASTIL	PAR	PAR	PAR	PAR	PAR	PAR	PAR	PAR
	t.m	t.m	t.m	t.m	t.m	t.m	t.m	t.m
TRINQUETE	149,8	426,2	634,0	702,7	636,9	383,2	485,0	102,7
M.PROEL	43,2	142,8	159,8	144,0	195,9	147,4	186,6	0,0
M.POPEL	42,9	141,7	158,5	141,1	192,0	250,8	183,3	64,3
MESANA	40,8	134,8	179,2	169,9	231,2	302,0	212,4	64,7
TOTALES	276,7	845,6	1131,4	1157,7	1256,1	1083,4	1067,3	231,7

COMPARACION CONDICIONES CARGA

CARGA A APLICAR PARA LA COMPRESIÓN DE PALOS MACHO Y FIRMES

Resumen de los cálculos en las tres condiciones de carga:

MASTIL	COMPRESION POR VELAS	POR ROTURA		COMPRESION POR PAR ADRIZAMIENTO	
	kN	kN		kN	
TRINQUETE	1.244		3.187	5.227	
M.PROEL	296	,	2.390	4.458	
M.POPEL	391		2.390	4.602	
MESANA	524		<mark>2.390</mark>	5.128	

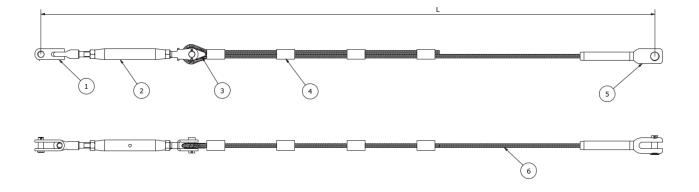
RESULTADO DE LOS CALCULOS DE PANDEO

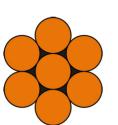
Palo Mayor Popel

Panel			COMPRESIÓN POR		COMPRESIÓN POR	
tramo	PCR		PAR VELAS		ROTURA OBENQUE	
	N	kN	391 kN	MARGEN	2.390 kN	MARGEN
1/1	12.759.035	12.759	PASS	3165%	PASS	434%
1/2	7.239.575	7.240	PASS	1752%	PASS	203%
1/3	6.662.311	6.662	PASS	1605%	PASS	179%
1/4	4.411.705	4.412	PASS	1029%	PASS	85%
1/5	4.394.357	4.394	PASS	1024%	PASS	84%
2/1	240.982.826	240.983	PASS	61562%	PASS	9982%
2/2	62.250.315	62.250	PASS	15828%	PASS	2504%
2/3	121.585.543	121.586	PASS	31011%	PASS	4987%

RESULTADO DE LOS CALCULOS DE PANDEO

Mastelero Trinquete


Panel	SECCIÓN	PCR	COMPRESIÓN POR VELAS		COMPRESION OBENQ	
		kN	RESULTADO	MARGEN	RESULTADO	MARGEN
1	320X15	1.058	PASS	1452%	FAIL	-6%
1	350X15	1.392	PASS	1943%	PASS	24%
2	350X15	17.180	PASS	25111%	PASS	1426%
2	330X15	14.344	PASS	20949%	PASS	1174%



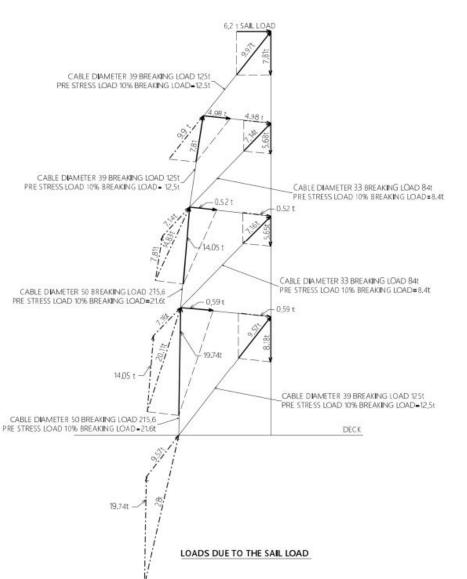
LA JARCIA FIRME

	v	ire ropes, galvanized *		
Non	ninal strength	1570 N/mm ²	1570 N/mm ²	1570 N/mm ²
Nominal diameter of rope	Circumference	Round strend wire rope 6 x 7 Conetr. 6 (6 + 1) FC	Round strand wire rope 6 x 19 standard Constr. 6 (12 + 6 + 1) FC	Round strand wire rope 6 x 36 Warrington-Scale Constr. 6 (1+7+(7+7)+14) IWRC

Cable acero inoxidable 1×7

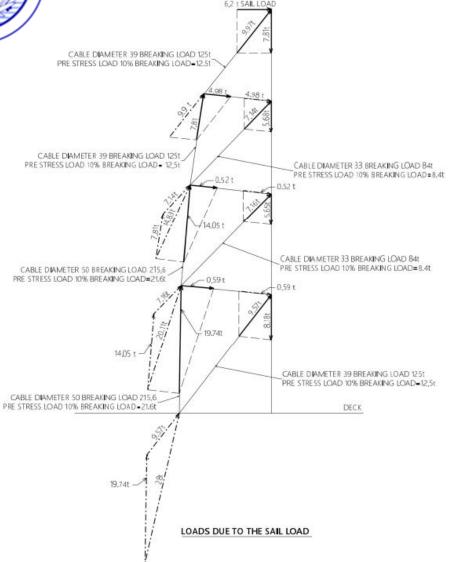
Acero inoxidable AISI 316 Resistencia 1570 N/mm2 Módulo elástico (E) 126000 N/mm2 Acabado pulido

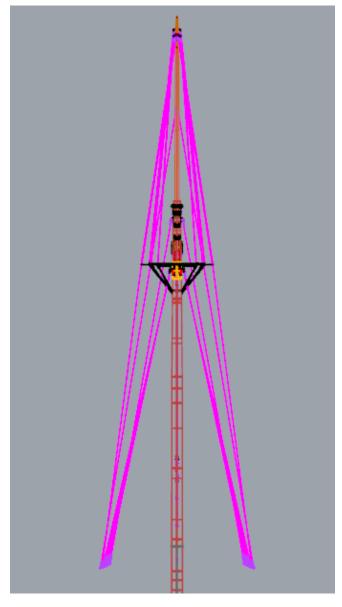
Categoría: CABLES DE ACERO INOXIDABI



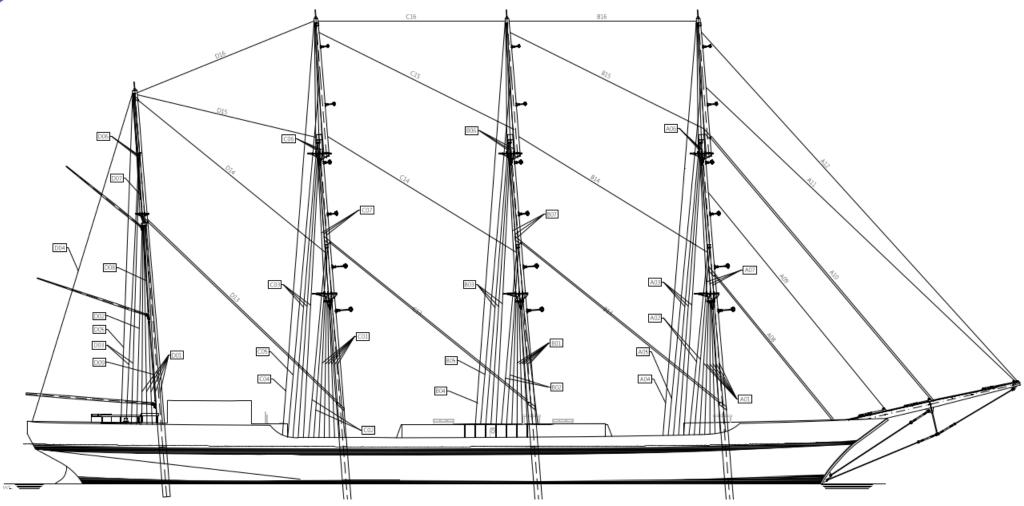
LA TENSION DE LA JARCIA

TABLA DE TENSIONES

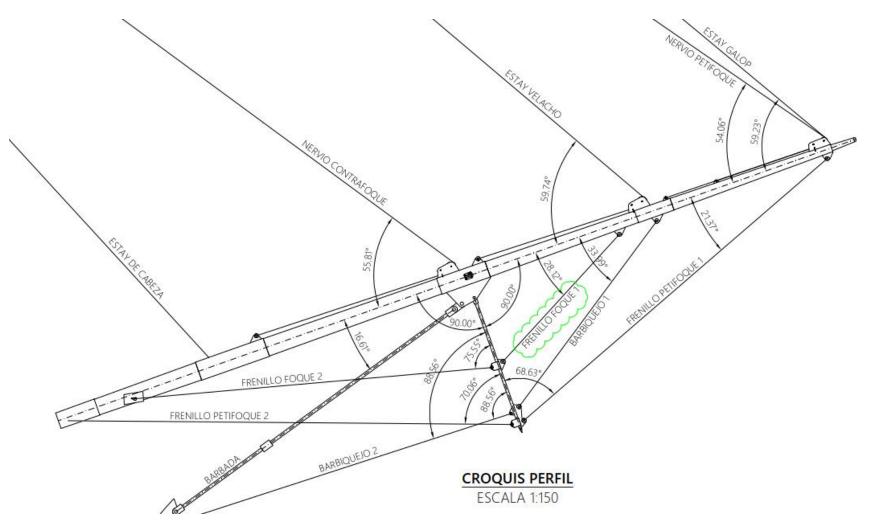

_	DENOMINACIÓN	COMPOSICION	Ø (mm)	NOTAS	BL (kN)	TENSIC	TENSION (kN)	
	DENOMINACION	CONFOSICION	ν (mm)	NOTAS	DL (KI4)	min	max	
	ESTAY DE GALOP	6X36WS+IWRC	26	Galv A	378	56,7	75,6	
	NERVIO PETIFOQUE	6X36WS+IWRC	26	Galv A	378	56,7	75,6	
	ESTAY DE VELACHO	6X36WS+IWRC	38	Galv A	808	121,2	161,6	
벁	NERVIO CONTRAFOQUE	6X36WS+IWRC	38	Galv A	808	121,2	161,6	
TRINQUETE	ESTAY DE CABEZA	6X36WS+IWRC	38	Galv A	808	121,2	161,6	
N N	OBENQUILLOS	6X36WS+IWRC	26	Galv A	378	56,7	75,6	
¥	OBENQUES	6X36WS+IWRC	38	Galv A	808	121,2	161,6	
	BURDA JUANETE	6X36WS+IWRC	26	Galv A	378	56,7	75,6	
	BURDA VELACHO	6X36WS+IWRC	26	Galv A	378	56,7	75,6	
	QUINALES	6X36WS+IWRC	38	Galv A	808	121,2	161,6	
	ESTAY MASTELERO	6X36WS+IWRC	30	Galv A	504	75,6	100,8	
S	ESTAY TRIATICO	6X36WS+IWRC	38	Galv A	808	121,2	161,6	
PALOS	OBENQUILLOS	6X36WS+IWRC	26	Galv A	378	56,7	75,6	
RESTO	OBENQUE	6X36WS+IWRC	38	Galv A	808	121,2	161,6	
R	QUINALES	6X36WS+IWRC	38	Galv A	808	121,2	161,6	
	BURDA	6X36WS+IWRC	26	Galv A	378	56.7	75.6	

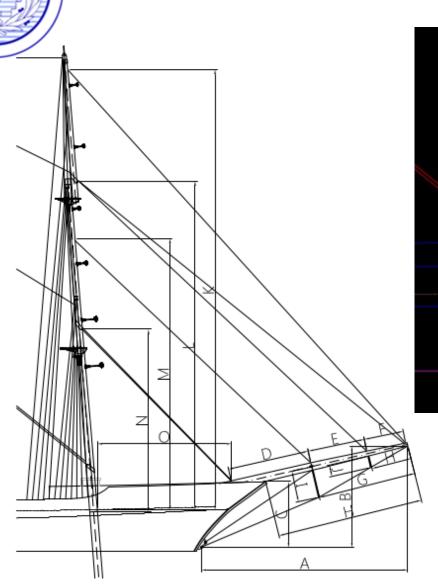


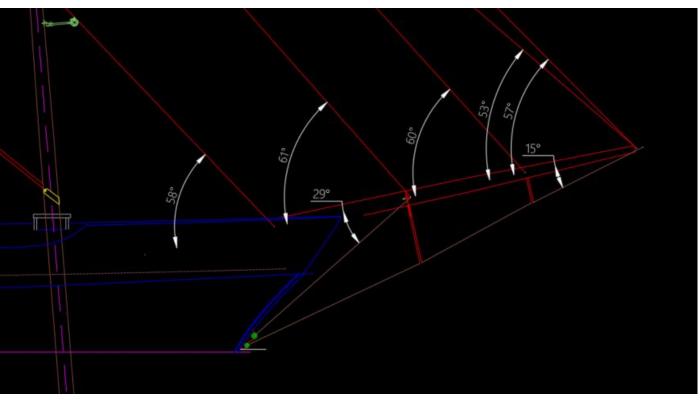
EL EQUILIBRIO TRASVERSAL



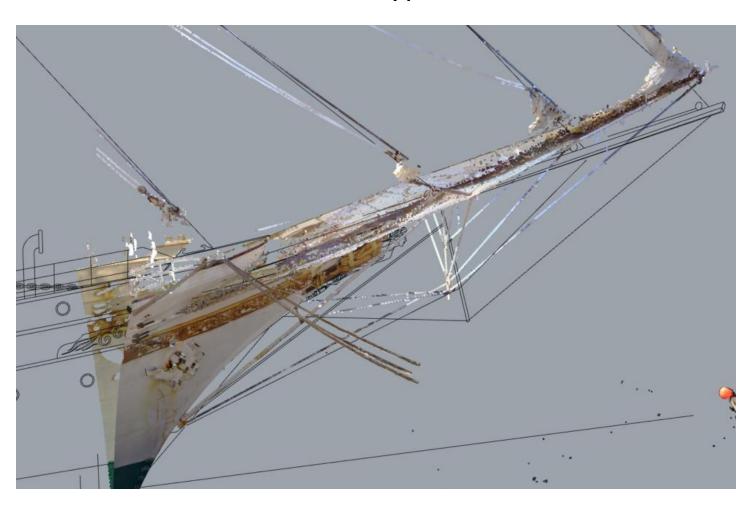
EL EQUILIBRIO LONGITUDINAL




JARCIA DEL BAUPRES

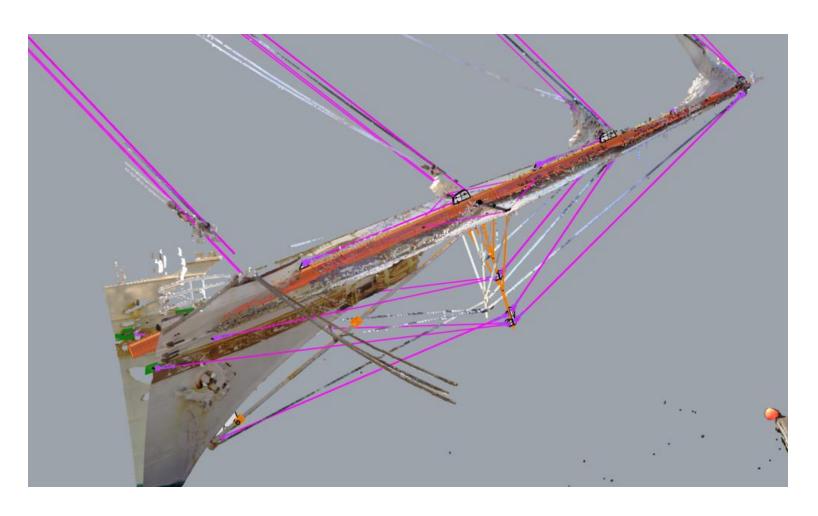


MEDICIONES PREVIAS



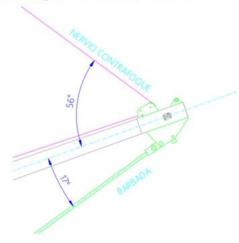
ESCANEADO 3D

Diferencias entre realidad y plano existente



MODELO 3D

Modelo 3D sobre escaneado 3D



EQUILIBRIO

La Barbada debe soportar la carga perpendicular al Bauprés que transmite el Nervio de Contrafoque. El Nervio de Contrafoque tiene una carga de trabajo de 202 kN, por lo que la carga perpendicular al Bauprés que transmite es:

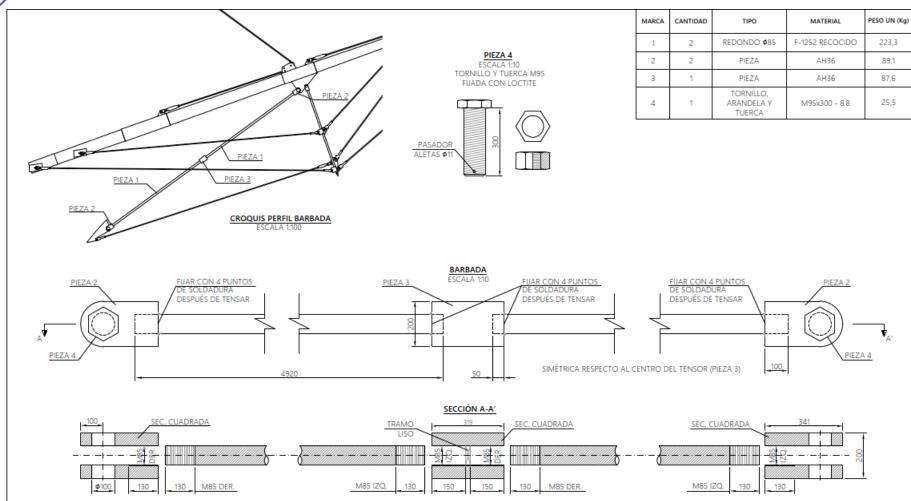
Nervio de Contrafoque: 202 x sen 56 = 167 kN.

Como esa carga debe ser soportada por la componente perpendicular al bauprés de la Barbada tenemos que la carga de trabajo que debe soportar por la Barbada es:

- Barbada: 167 / sen 16 = 606 kN

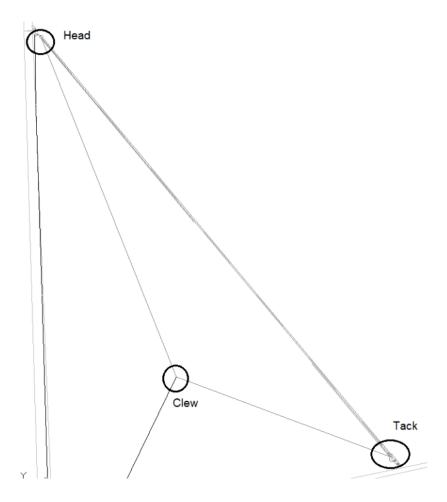
Como el coeficiente de seguridad para redondos es de acero es de 2,5, la carga de rotura de la barbada debe ser mayor de 1.515 kN.

No obstante, el diámetro final de la barbada viene marcado por su límite elástico, no por su carga de rotura, ya que es fundamental que a la carga de trabajo esté lejos de su límite elástico y su estiramiento sea mínimo.


Teniendo en cuenta que el límite elástico mínimo del acero F-1252 Recocido es de 735 N/mm² la barbada propuesta de 85 mm de diámetro, podrá soportar una carga de 4.170 kN con un alargamiento del 12%. Esto significa que con una carga real de 606 kN el alargamiento bajo carga de la Barbada será del 1,7%, que quedará reducido debido a la pretensión que llevará la Barbada.

La Barbada será un redondo de acero F-1252 Recocido, con una resistencia mínima de 90 kgf/mm² y de 85 mm de diámetro.

EQUILIBRIO


MUCHAS GRACIAS

JAVIER PAMIES javier.pamies@ghenova.com

REPARTO FUERZA DE LA VELA

Head (driza)......40%
Tack (amura).....30%
Clew (escota).....30%